The station mileage list and track layouts are from a 1929 C&S folio book.
of least resistance. Though the highway later built over or near much of the old road bed uses some six or seven tunnels to reach Idaho Springs (the narrowest stretch of Clear Creek Canyon), the railroad used none. The result was miles of hairpin curves snaking along the bottom of the canyon, broken by an occasional bridge crossing to the opposite bank. Along the existing stretches of the road bed are some fine examples of the Cornish and Welsh workmanship in building rock retaining walls. These are smaller versions of the vast retaining walls used near Alpine Tunnel along the Pallisades of South Park fame. Cut and placed with precision (and no mortar) these retaining walls give the impression they are only a few years old.

Clear Creek has been known to go wild from time to time. This caused alterations and rebuilding throughout the history of the line. Alterations were usually minor however, this prompted employees to believe in the waning years that the railroad preferred to keep the line close to the creek so each washout would add evidence to their case for abandonment.

Passing by early attractions such as Elk Creek (in later years only a water stop) and Beaver Brook — an interesting station and siding once sporting a dance pavilion up on the mountain side, we arrive at Forks Creek. Already we’ve sampled three and four percent grades. Now you can see why short trains or double and triple headers were the order of the day on this branch.

Forks Creek was a division point on the Clear Creek branch. Here the North and South forks of the creek joined — here the C&S built a wye across the fork. One branch heading north to Blackhawk and Central City, the other continuing westerly to Idaho Springs and eventually to the Georgetown Loop and terminating at Silver Plume.

The Forks Creek Station early in its life had a companion structure in the form of an eating or refreshment house. Numerous early photo stops were made here. Middle and later years of existence for the eating house are not so well documented. Mallory Hope Ferrell’s Gilpin Tram book shows that eventually the gap between the station and eating house was filled in. Those with access to Colorado Rail Annual #10 “Narrow Gauge to Central and Silver Plume”, will note that the “Station List” on page 207 states that by 1896 the Eating House measured 16 x 51 feet with an addition of 16 x 32 feet and a 16 x 27 foot auxiliary building between. This possibly would match up with the building in the photo in the Gilpin Tram book (taken in 1910) but how those dimensions could fit the earlier Refreshment House is beyond me. There is the possibility of fire or flood destroying the early structure. No proof exists one way or the other, but I’d almost be willing to wager the Rail Annual figures list a rebuilt Eating House. At any rate the depot out-lived all versions of the Eating House and in later years stood alone.

The plans show the station and Refreshment House in the early years, although the station roof was originally shingled as noted. No photos of the back (south) or west sides of the structures have been found, so educated guessing, artistic license and reasoned “imagineering” were substituted.

As modeled, the eating house was built and weathered as it might have looked in later years with no structural changes. Like an aging dowager she still serves her original purpose on the UC&N.

Modeling the station and eating house presents no real problem with possible exception of the sweep in the permanent awnings on the eating house. Grandt Line windows proportioned out best for both structures. HO-29 (S and O equivalents) double hung 21 inches and 64 inches were used. The eating house had modified top frames. I substituted Campbell doors and windows on the back sides.

The station was probably a streaked box car red with cream or depot buff window frames. The eating house was light-depot buff with window frames and doors a darker color, perhaps boxcar red. The window sills and moldings were the same lighter color as the sides.

The roof of the Eating House seems to be similar to the batten or ribbed seam roof shown in Al Armitage’s Sept/Oct 1978 GAZETTE article. There is a form of semi-corrugated sheet with a similar appearance that can be found on many
older buildings in Colorado (and elsewhere) today. I have seen it used as siding also. The UC&N version was fashioned by embossing heavy duty aluminum foil over Northeastern board and batten siding. Painted a rust-streaked and faded boxcar red, it probably would have matched the dark trim originally.

The kitchen chimney was fashioned with soldered brass tubing. This was an interesting exercise in patience and exhausted my stock of socially unacceptable words which I reserve for those occasions when things slip at the most critical point in construction work.

Early in its career Forks Creek's main through truss bridge was replaced by an iron one. In the process there was some line relocation (see map). The following years saw other changes, many no doubt due to the spring run-off flooding.

Next: Forks Creek Section House

Forks Creek as modeled by the author (the UC&N). Showing wear and age, but still proud and useful.

Forks Creek. No eating house is shown in the "After 1900" sketch as the history and conformation is not fully known.
Map #1: Black Hawk circa 1916 showing the relationship between the town and yard trackage. A few buildings of interest are numbered: 1. Independent Smelting and Refining Co. 2. Boiler Works. 3. Machine Shop (probably connected with the boiler works). 4. The Gilpin Hotel. 5. State Ore Sampling Works. Spurs were extended and reduced as needs required over the years. By 1917 the dual gauge was gone and with it all tram trackage.

Map #1a: An extension of Map #1 showing the C&S 50-foot iron turntable. Black Hawk also sported a water tank, but no photos of it have been seen. It's shown as well as the pump house and well serving it.
Map #2: Black Hawk to Central City via switchbacks. Tram trackage not shown.

Photo opposite: A 1940 view of the relocated yard. The ore dock is between the tracks at left center. The new highway curves around the ridge to right. Downtown Black Hawk is just out of sight to right. Photo by John W. Maxwell.

Map #3: Black Hawk station and yards after the flume collapse – circa 1935. The ore dock is shown. 1932 photos don't show the ore dock, dating it some time after July of that year, at least in this location.
Sketch 1: The Plutus Smelter and Sampling Works (distance) and the Plutus Mine (foreground) circa 1890.

Map 1: The Plutus Mine and Smelter occupied the area in which the Stanley Mines Company was later located.

Further milling and refining. The ore was delivered to the freight cars through a chute under the ore house section of the building. These chutes can be seen as they looked in 1980 in photo #2. Similar chutes were shown in the drawing by Keevan Burnside in John Hitzeman’s series on ore processing in the January/February 1985 GAZETTE. The “radial lever” style of chute control mentioned by John was favored by the Stanley.

There are ore chutes on both sides of the Stanley’s ore house. When I laid the rails for my HO3 UCN I built sidings on both sides of my HO scale Stanley. I
Photo 1: The Stanley sign is painted in Boxcar Red on the pale yellow siding. The chutes show just under the "no parking" sign.

Sketch 2 (right): The Stanley Mine as seen from Bald Mountain looking west, circa 1907. The general layout of the buildings remains the same today. Match this sketch with map #3 for building identification. The small building near the change house is not shown on the map and is probably the "outdoor convenience."

Photo 2: A close-up of the chute doors of the Consolidated Stanley Mines Company as they appeared in 1980.

Photo 4 (right): The west side of the Stanley Mine from Bald Mountain. The freeway shows in the background.

Photo 5: (far right): Looking south beside the ore house, this photo shows where the railroad spur was located.

Map 2: By 1895 the Plutus Smelter was closed but the Stanley Mine had replaced the original Plutus Mine structure.
Photo 3: The north end of the Stanley Mine. The angled roof covers some of the hoist because the shaft is housed in the building in the foreground.

Map 3: The Plutus Smelter was gone by 1900; by 1907 the Stanley Mines Co. buildings appeared much as they do today.
Map 4: This map shows the relationship of the Stanley Mines Company to the Hukill Mine described in Part 33 of my series, and the truss rod bridge, described in Part 32. All the maps in this article are based on Sanborn Insurance maps from the Library of Congress.

Map 4

North

Not to scale

Photo 6: Another side view of the Stanley Mine, with the heavy beam ends visible. This building was built to last.

Photo 7: The author’s HO scale model of the Stanley Mine. The prototype had no sign on this side but at one time the model could only be seen from this side, so the sign was added. Having the rail sidings on both sides of the building is also not correct.

learned later from the Sanborn maps that only the south side of the prototype Stanley had a spur. My extra spur is handy for coal delivery to the blacksmith shop and attached storage area, so the siding remains useful on my UC&N.

The Stanley Mines Company is a big building. At first I was concerned I would have to condense it so the buildings would fit into my layout, but I was able to juggle the building into the space I had available. (I will include plans for these buildings in my next article.)

The Stanley has always been pale yellow with a darker roof and trim. The present-day color scheme, which is very old, is a pale yellow with Boxcar Red roof and windows. I made my yellow by mixing two-thirds Floquil Rio Grande Gold with one-third Floquil White.

Though large and complex looking, the Stanley is really nothing more than an assembly of odd-sized boxes with the sides and roof made of corrugated metal siding. Building the model should not be difficult, but finding space for it may be a problem. The Stanley, along with the Hukill Mine (Part 33) and the truss rod bridge (Part 32), would make an interesting diorama or layout scene in any scale.

In Part 35 I will present the plans for the Stanley and my UC&N Idaho Springs track plan before moving on to Georgetown, Colorado.
Photo F taken in the 1900's is of Idaho Springs from a slightly different view than my sketch. The "OWL" on the fence advertised a brand of cigar. The hardware storage and carriage works are just behind the C&S boxcars. Photo, collection of Harry Brunk.

My fictional Quigley Meat Packing Plant stands in for both the hardware and furniture building and the whole block of buildings shown framed by the Owl Cigar painted fence in Photo F taken in the early 1900's. I decided to use the Quigley building (left over from another layout) here because there wasn't room enough to do the prototype buildings justice. The alley effect begins here and generally I am satisfied with the result, although I would have needed an area perhaps twice as long as I had to model all I really wanted to of Idaho Springs on the UC&N. I used concentration and overlapping of buildings which resulted in a facsimile rather than a real model of the town. However, the "feeling" is right as it is with Black Hawk so I do view my attempt to model Idaho Springs as a success.

The hardware storage building still stands and is an interesting combination of corrugated metal and "depression brick" embossed metal siding. The building on the corner of Miner and 17th across from the block detailed here allowed me to model some of this embossed metal siding. This corner building's last occupant called it "Corner Repair and Supply." It changed through the years and the final version joins three or more structures to form one long rambling building. A number of building siders are used on it but the main one is embossed metal "depression stone" rather than the "depression brick." It's a character-laden structure if there ever was one. I'll provide elevations and details in part 22 in the next issue.
of open cars to the smelter. Certainly, however, not all the ore was shipped this way.

The ores from the various mines were kept separate by the mill. The multi-chuted loading pockets would appear to be part of a system that maintained this separation. You could load cars until a particular mine's assigned ore bin for the day was empty. Keeping from jumbling the various mine's ores must have been a real problem for the Argo Mill men. If the ores from the different mines were kept thoroughly separated, the people in charge certainly earned their pay.

The varied chutes and levels at the top of Argo's ore pockets caused me to wonder. I took some photos when I was investigating the top of the ore pockets years ago. I can't go back for more because this is a restricted area now and even when I was up there, not a very safe place to tramp around. My photos do show some of the complexity of the chutes. While standing there it dawned on me that baffling of the ore chutes below the mine dump track was necessary not only for distribution of the ore to designated pockets, but to also slow the tons of rock. A straight drop from the dump track to the pocket would smash even the heaviest timbers in the ore bin if baffles were not used to slow the fall of the ore. A simplified version of what I mean by "baffles" is shown in Diagram A.

The C&S trackage servicing Argo Tunnel has been listed as 1,295 feet of passing track with a 375 foot spur connected to the east end of the passing track. The 375 foot spur is not shown on track plans and blueprints of Idaho Springs that I've found, but is evidenced by the boxcar on this spur near the lower mill buildings in some photos I've seen. Highly refined ores were probably loaded on C&S boxcars here when and if a rich concentrate was completed. Supplies for both mines and the mill could arrive here also. Coal to stoke the boiler under that tall stack on the lower (southeast) corner of the mill was off-loaded here. The spur appears to end near this corner, but on my UC&N the spur continues across the entire front of the mill. Even with the extension on my model, the spur length is still less than half the

From the park across Clear Creek Argo's chutes look like this today. Time has been hard on the superstructure buildings and bins.
This siding also works well for leaving cars for Idaho if you work Black Hawk first. This is also where freight for Golden or Denver from Black Hawk would be left as you complete the Black Hawk work and head on up to Idaho Springs. The train for Denver then only had a few moves to make to add this tonnage for the down trip "home". This is the way I operate the UC&N.

The bridge or bridges across the "back" of the ywe were subject to dramatic change over the years. The other John Maxwell photo in the November/December 1980 GAZETTE shows little more than a low trestle here in the last years. On the UC&N, I still maintain the original style of bridge (photo 1). The coal dock changed over the years, but in general followed the practices and style of the one at Alpine. This was a type not uncommon to the D&RG as well as the CB&Q, and has been presented in kit form in both HO and O scale.

The pump house changed little except in color over the years. Lean-to's or add-on's did change, but I present it here as it appeared in later years. There was a well listed for Forks, though it would seem easier to merely pump from the creek into the tank. The pump powered by a small boiler and steam engine sported an oversized stack. The coal for the pump engine was placed in the track side of the pump house through the small door seen on the plans. The larger doors were for maintenance and operation of the pump. The small add-on was probably a tool shed. In early years the pump house was light, maybe even white. Later it was a depot buff shade. My UC&N pump house was painted buff and is greatly weathered. The roof is tarpapered (Photo 2).

The Forks Creek tank was flat-topped as shown and painted a darker color (probably box car red). It was grandly weathered as only a wood water tank can be. The spout had a side-swing position when stowed, possibly necessitated by the close clearances next to the mountain side across the tracks from the tank. (John Maxwell has copies of official C&S diagrams for water tanks and supports and these are well worth ordering from him.) The UC&N tank (Photo 2) is resting on supports based on Mr. Maxwell's diagrams and photos of the Fork's tank. The tank itself is a modified Atlas plastic tank with strap bands over most of the original rod-type bands. Some of the wire or rod bands are left as the prototype sported a few near the base of the tank.

Of additional interest are the "STOP" and county line signs just west of the section house covered in Part 2 of this series. The UC&N versions are shown in Photo 3. The "STOP" sign is based on a Kindig slide showing a "SLOW" sign of the same shape, size and style lettering in later years at Forks. The county line sign is a double-sided one announcing Gilpin County when headed east and Clear Creek County when headed west. What the prototype sign looked like is unknown to me.

An interesting area, Forks. As John Maxwell has noted, it was never a town, only a rail junction. The area has been fairly well covered now in the GAZETTE and elsewhere. It is not a difficult area to model convincingly even in confined space, yet it is "railroad junction" in its purest form.

In part 15 I'll look at Colorado and Southern refrigerator cars, definitely the showiest bit of color on the C&S freight roster. Some of these eventually found their way to the Rio Grande Southern and later the White Pass Yukon.

Photo 1. This older style bridge still in use on the UC&N. The coal dock is as it appeared after 1900.